电脑基础 · 2023年3月14日

ChatGPT的N种用法(持续更新中。。。)

目录

  • 前言
  • 一、语法更正
  • 二、文本翻译
  • 三、语言转换
    • 3-1、Python-->JAVA
  • 四、代码解释-1
  • 五、代码解释-2
  • 六、修复代码错误
  • 六、作为百科全书
  • 七、信息提取
  • 七、好友聊天
  • 八、创意生成器
    • 8-1、VR和密室结合
    • 8-2、再结合AR
  • 九、采访问题
    • 9-1、采访问题清单
    • 9-2、采访问题清单并给出相应答案
  • 十、论文大纲
    • 10-1、创建论文大纲
    • 10-2、解释大纲内容
  • 十一、故事创作
    • 11-1、爱情故事
    • 11-2、恐怖故事
  • 十二、问题类比
  • 二十、闲聊机器人
  • 总结

前言

当今的ChatGPT是一个强大的语言模型,它可以帮助您创建出色的产品并提高您的业务成功率。ChatGPT利用大规模的自然语言处理和机器学习算法,可以进行自然而流畅的对话,理解自然语言问题和回答。您可以使用ChatGPT来建立智能客服、智能助手、文本自动补全、语音识别和机器翻译等多种产品。ChatGPT可以快速适应新的数据和新的场景,使用ChatGPT,您可以轻松实现个性化、高效率和全天候的服务。让ChatGPT帮助您推动业务的增长!


一、语法更正

用途:文章、论文等润色。

二、文本翻译

用途:日常学习、商务翻译等。

三、语言转换

3-1、Python–>JAVA

用途:工作用途,不同语言工程师之间的合作,更加方便。

import numpy as np
import plotly.express as px
def thresholding_algo(y, lag, threshold):
    """
    :param y: 输入列表
    :param lag: 滑动窗口大小
    :param threshold: 调节系数,用于调节容忍范围的大小。
    :return:
    """
    # signals:信号列表
    signals = np.zeros(len(y))
    avgFilter = np.zeros(len(y))
    # 初始化平均值列表、差值列表
    avgFilter[lag - 1] = np.mean(y[0:lag])
    dif_li = [0] * len(y)
    for i in range(lag, len(y)):
        if i < len(y) - lag - 30:
            for j in range(i + 11, len(y)):
                if y[j] >= y[i - 1]:
                    break
            if j >= len(y) - 30:
                back = y[i - 1]
            else:
                back = np.mean(y[j + 11:j + 20 + lag])
        else:
            back = y[i - 1]
        # 前后均值差值计算
        tmp = abs(back - avgFilter[i - 1])
        dif = (tmp if tmp > 1 else 1)
        if abs(y[i] - avgFilter[i - 1]) > dif * threshold:
            signals[i] = (1 if y[i] > avgFilter[i - 1] else -1)
            avgFilter[i] = np.mean(y[(i - lag):i])
            y[i] = avgFilter[i - 1]
        else:
            signals[i] = 0
            avgFilter[i] = np.mean(y[(i - lag):i])
        dif_li[i] = dif
    return dict(signals=np.asarray(signals),
                avgFilter=np.asarray(avgFilter),
                y=np.asarray(y),
                dif=np.asarray(dif_li),
                )

public static Map<String, double[]> thresholding_algo(double[] y, int lag, double threshold) {
    double[] signals = new double[y.length];
    double[] avgFilter = new double[y.length];
    Arrays.fill(avgFilter, 0.0);
    avgFilter[lag - 1] = mean(Arrays.copyOfRange(y, 0, lag));
    double[] dif_li = new double[y.length];
    Arrays.fill(dif_li, 0.0);
    for (int i = lag; i < y.length; i++) {
        int j;
        if (i < y.length - lag - 30) {
            for (j = i + 11; j < y.length; j++) {
                if (y[j] >= y[i - 1]) {
                    break;
                }
            }
            double back;
            if (j >= y.length - 30) {
                back = y[i - 1];
            } else {
                back = mean(Arrays.copyOfRange(y, j + 11, j + 20 + lag));
            }
        } else {
            back = y[i - 1];
        }
        double tmp = Math.abs(back - avgFilter[i - 1]);
        double dif = tmp > 1 ? tmp : 1;
        if (Math.abs(y[i] - avgFilter[i - 1]) > dif * threshold) {
            signals[i] = y[i] > avgFilter[i - 1] ? 1 : -1;
            avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));
            y[i] = avgFilter[i - 1];
        } else {
            signals[i] = 0;
            avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));
        }
        dif_li[i] = dif;
    }
    Map<String, double[]> result = new HashMap<>();
    result.put("signals", signals);
    result.put("avgFilter", avgFilter);
    result.put("y", y);
    result.put("dif", dif_li);
    return result;
}
private static double mean(double[] array) {
    double sum = 0.0;
    for (double d : array) {
        sum += d;
    }
    return sum / array.length;
}

四、代码解释-1

用途:当我们来到一家新的公司,发现前任工程师留下了一摊谁都看不懂的代码,这时候,如果有个人能帮我们解释一下这些代码是什么意思,那简直不要太开心。

def Fusion_algorithm(y_list):
    """
    最终的融合算法
    1、第一次遍历列表: 处理掉小于上一个值的点,使其等于上一个值。
    2、第二次使用z-score来处理异常点:一种基于统计方法的时序异常检测算法借鉴了一些经典的统计方法,比如Z-score和移动平均线
    该算法将时间序列中的每个数据点都看作是来自一个正态分布,通过计算每个数据点与其临接数据点的平均值和标准差,可以获得Z-score
    并将其用于检测异常值,将z-score大于3的数据点视为异常值,缺点:如果异常点太多,则该算法的准确性较差。
    3:param y_list: 传入需要处理的时间序列
    :return:
    """
    # 第一次处理
    for i in range(1, len(y_list)):
        difference = y_list[i] - y_list[i - 1]
        if difference <= 0:
            y_list[i] = y_list[i - 1]
        # 基于突变检测的方法:如果一个数据点的值与前一个数据点的值之间的差异超过某个阈值,
        # 则该数据点可能是一个突变的异常点。这种方法需要使用一些突变检测算法,如Z-score突变检测、CUSUM(Cumulative Sum)
        # else:
        #     if abs(difference) > 2 * np.mean(y_list[:i]):
        #         y_list[i] = y_list[i - 1]
    # 第二次处理
    # 计算每个点的移动平均值和标准差
    ma = np.mean(y_list)
    # std = np.std(np.array(y_list))
    std = np.std(y_list)
    # 计算Z-score
    z_score = [(x - ma) / std for x in y_list]
    # 检测异常值
    for i in range(len(y_list)):
        # 如果z-score大于3,则为异常点,去除
        if z_score[i] > 3:
            print(y_list[i])
            y_list[i] = y_list[i - 1]
    return y_list

五、代码解释-2

备注:上一个代码解释,我们可以看到,答案或许受到了代码中注释的影响,我们删掉注释,再来一次。对于解释中一些不懂的点,我们可以连续追问!

import numpy as np
from sklearn.ensemble import IsolationForest
import plotly.express as px
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import json
def Fusion_algorithm(y_list):
    for i in range(1, len(y_list)):
        difference = y_list[i] - y_list[i - 1]
        if difference <= 0:
            y_list[i] = y_list[i - 1]
        # else:
        #     if abs(difference) > 2 * np.mean(y_list[:i]):
        #         y_list[i] = y_list[i - 1]
    ma = np.mean(y_list)
    std = np.std(y_list)
    z_score = [(x - ma) / std for x in y_list]
    for i in range(len(y_list)):
        if z_score[i] > 3:
            print(y_list[i])
            y_list[i] = y_list[i - 1]
    return y_list

六、修复代码错误

用途:写完一段代码后发现有错误?让chatGPT来帮你!

### Buggy Python
import Random
a = random.randint(1,12)
b = random.randint(1,12)
for i in range(10):
    question = "What is "+a+" x "+b+"? "
    answer = input(question)
    if answer = a*b
        print (Well done!)
    else:
        print("No.")

六、作为百科全书

用途:chatGPT可以解释你所有的问题!但是列出小说这个功能有些拉跨,经过测试只有科幻小说列的还可以,其他类型不太行,可能chatgpt训练工程师是个科幻迷!

七、信息提取

用途:作为自然语言处理界的大模型,怎么能少得了信息提取呢?

七、好友聊天

用途:输入对方性格模拟聊天,这方面功能不太完善,可能有新鲜玩法我还没有挖掘出来。

八、创意生成器

用途:是不是常常会在创新上遇到思维瓶颈不知道怎么做?不要担心,让chatGPT帮你生成创意!

8-1、VR和密室结合

8-2、再结合AR

九、采访问题

用途: 可能您是一个媒体工作者,采访问题不知道怎么写?chatGPT可以帮您解决。

9-1、采访问题清单

9-2、采访问题清单并给出相应答案

十、论文大纲

用途: 这个功能对于研究生简直不要太爽了,一直在郁闷大纲怎么写,直接列出来大纲简直帮了我天大的忙!对于大纲中不理解的点,直接要求chatGPT给出进一步解释。代码也可以有!那一章的内容不太会写,直接让chatGPT安排,这样,一篇论文很快就写出来啦!

10-1、创建论文大纲

10-2、解释大纲内容

class PBA(nn.Module):
    def __init__(self, PerformanceThreshold, DistributionType, AttentionWeightRange):
        super(PBA, self).__init__()
        self.PerformanceThreshold = PerformanceThreshold
        self.DistributionType = DistributionType
        self.AttentionWeightRange = AttentionWeightRange
    def forward(self, input, performance_scores):
        # 计算注意力分数
        attention_scores = []
        for i in range(len(input)):
            if performance_scores[i] > self.PerformanceThreshold:
                attention_scores.append(performance_scores[i])
            else:
                attention_scores.append(0.0)
        # 将性能分数映射到注意力权重
        if self.DistributionType == "softmax":
            attention_weights = F.softmax(torch.tensor(attention_scores), dim=0)
        elif self.DistributionType == "sigmoid":
            attention_weights = torch.sigmoid(torch.tensor(attention_scores))
        else:
            raise ValueError("Unknown distribution type: {}".format(self.DistributionType))
        # 缩放注意力权重到指定范围
        attention_weights = attention_weights * (self.AttentionWeightRange[1] - self.AttentionWeightRange[0]) + self.AttentionWeightRange[0]
        # 计算加权输入
        weighted_input = torch.mul(input, attention_weights.unsqueeze(1).expand_as(input))
        output = torch.sum(weighted_input, dim=0)
        return output

十一、故事创作

用途: 这个功能真的太太太棒了,以后我自己列提纲出来就可以写小说啦!

11-1、爱情故事

11-2、恐怖故事

十二、问题类比

二十、闲聊机器人

用途:这个不多说了,用来闲聊体验感真的很不错。


总结

emmm,今天白嫖chatGPT次数太多了,request请求被禁止了,那就改天再请求啦~