机器学习强基计划4-2:通俗理解极大似然估计和极大后验估计+实例分析 目录 0 写在前面 1 从一个例子出发 2 极大似然估计 3 极大后验估计 4 Python实现 0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 1 从一个例子出发 某硬币有 θ \theta θ的概率正面朝上,为确定
近期评论