深度强化学习-DDPG算法原理与代码
引言
1 DDPG算法简介
2 DDPG算法原理
2.1 经验回放
2.2 目标网络
2.2.1 算法更新过程
2.2.2 目标网络的更新
2.2.3 引入目标网络的目的
2.3 噪声探索
3 DDPG算法伪代码
4 代码实现
5 实验结果
6 结论
引言
Deep Deterministic Policy Gradient (DDPG)算法是DeepMind团队提出的一种专门用于解决连续控制问题的在线式(on-line)深度强化学习算法,它其实本质上借鉴了Deep Q-Network (DQN)算法里面的一些思想。本文就带领大家了解一下这个算法,论文和代码的链接见下方。
论文:https://arxiv.org/pdf/1509.02971.pdf
代码:https://github.com/indigoLovee/DDPG
喜欢的话请点个star哦!
1 DDPG算法简介
在DDPG算法之前,我们在求解连续动作空间问题时,主要有两种方式:一是对连续动作做离散化处理,然后再利用强化学习算法(例如DQN)进行求解。二是使用Policy Gradient (PG)算法 (例如Reinforce) 直接求解。但是对于方式一,离散化处理在一定程度上脱离了工程实际;对于方式二,PG算法在求解连续控制问题时效果往往不尽人意。为此,DDPG算法横空出世,在许多连续控制问题上取得了非常不错的效果。
DDPG算法是Actor-Critic (AC) 框架下的一种在线式深度强化学习算法,因此算法内部包括Actor网络和Critic网络,每个网络分别遵从各自的更新法则进行更新,从而使得累计期望回报最大化。
2 DDPG算法原理
DDPG算法将确定性策略梯度算法和DQN算法中的相关技术结合在一起,之前我们在讲DQN算法时,详细说明了其中的两个重要的技术:经验回放和目标网络。具体而言,DDPG算法主要包括以下三个关键技术:
(1)经验回放:智能体将得到的经验数据放入Replay Buffer中,更新网络参数时按照批量采样。
(2)目标网络:在Actor网络和Critic网络外再使用一套用于估计目标的Target Actor网络和Target Critic网络。在更新目标网络时,为了避免参数更新过快,采用软更新方式。
(3)噪声探索:确定性策略输出的动作为确定性动作,缺乏对环境的探索。在训练阶段,给Actor网络输出的动作加入噪声,从而让智能体具备一定的探索能力。
2.1 经验回放
经验回放就是一种让经验概率分布变得稳定的技术,可以提高训练的稳定性。经验回放主要有“存储”和“回放”两大关键步骤:
存储:将经验以形式存储在经验池中。
回放:按照某种规则从经验池中采样一条或多条经验数据。
从存储的角度来看,经验回放可以分为集中式回放和分布式回放:
集中式回放:智能体在一个环境中运行,把经验统一存储在经验池中。
分布式回放:多个智能体同时在多个环境中运行,并将经验统一存储在经验池中。由于多个智能体同时生成经验,所以能够使用更多资源的同时更快地收集经验。
从采样的角度来看,经验回放可以分为均匀回放和优先回放:
均匀回放:等概率从经验池中采样经验。
优先回放:为经验池中每条经验指定一个优先级,在采样经验时更倾向于选择优先级更高的经验。一般的做法是,如果某条经验(例如经验)的优先级为,那么选取该经验的概率为:
优先回放可以具体参照这篇论文 :优先经验回放
经验回放的优点:
1.在训练Q网络时,可以打破数据之间的相关性,使得数据满足独立同分布,从而减小参数更新的方差,提高收敛速度。
2.能够重复使用经验,数据利用率高,对于数据获取困难的情况尤其有用。
经验回放的缺点:
无法应用于回合更新和多步学习算法。但是将经验回放应用于Q学习,就规避了这个缺点。
代码中采用集中式均匀回放,具体如下:
import numpy as np
class ReplayBuffer:
def __init__(self, max_size, state_dim, action_dim, batch_size):
self.mem_size = max_size
self.batch_size = batch_size
self.mem_cnt = 0
self.state_memory = np.zeros((self.mem_size, state_dim))
self.action_memory = np.zeros((self.mem_size, action_dim))
self.reward_memory = np.zeros((self.mem_size, ))
self.next_state_memory = np.zeros((self.mem_size, state_dim))
self.terminal_memory = np.zeros((self.mem_size, ), dtype=np.bool)
def store_transition(self, state, action, reward, state_, done):
mem_idx = self.mem_cnt % self.mem_size
self.state_memory[mem_idx] = state
self.action_memory[mem_idx] = action
self.reward_memory[mem_idx] = reward
self.next_state_memory[mem_idx] = state_
self.terminal_memory[mem_idx] = done
self.mem_cnt += 1
def sample_buffer(self):
mem_len = min(self.mem_size, self.mem_cnt)
batch = np.random.choice(mem_len, self.batch_size, replace=False)
states = self.state_memory[batch]
actions = self.action_memory[batch]
rewards = self.reward_memory[batch]
states_ = self.next_state_memory[batch]
terminals = self.terminal_memory[batch]
return states, actions, rewards, states_, terminals
def ready(self):
return self.mem_cnt >= self.batch_size
2.2 目标网络
由于DDPG算法是基于AC框架,因此算法中必然含有Actor和Critic网络。另外每个网络都有其对应的目标网络,所以DDPG算法中包括四个网络,分别是Actor网络,Critic网络,Target Actor网络和Target Critic网络 。本节主要介绍一下DDPG算法的更新过程,目标网络的更新方式以及引入目标网络的目的
2.2.1 算法更新过程
算法更新主要更新的是Actor和Critic网络的参数,其中Actor网络通过最大化累积期望回报来更新,Critic网络通过最小化评估值与目标值之间的误差来更新。在训练阶段,我们从Replay Buffer中采样一个批次的数据,假设采样到的一条数据为,Actor和Critic网络更新过程如下。
Critic网络更新过程:利用Target Actor网络计算出状态下的动作:
这里需要注意:计算出动作后不需要加入噪声。然后利用Target Critic网络计算出状态动作对的目标值:
接着利用 Critic网络计算出状态动作对的评估值:
最后利用梯度下降算法最小化评估值和期望值之间的差值,从而对Critic网络中的参数进行更新:
上述过程其实和DQN算法非常类似。
Actor网络更新过程:利用Actor网络计算出状态下的动作:
这里需要注意:计算出动作后不需要加入噪声。然后利用Critic网络计算出状态动作对的评估值(即累积期望回报):
最后利用梯度上升算法最大化累积期望回报(代码实现是采用梯度下降算法优化,其实本质上都是一样的),从而对Actor网络中的参数进行更新。
至此我们就完成了对Actor和Critic网络的更新。
2.2.2 目标网络的更新
对于目标网络的更新,DDPG算法中采用软更新方式,也可以称为指数平均移动 (Exponential Moving Average, EMA)。即引入一个学习率(或者成为动量),将旧的目标网络参数和新的对应网络参数做加权平均,然后赋值给目标网络:
Target Actor网络更新过程:
Target Critic网络更新过程:
学习率(动量),通常取值0.005。
2.2.3 引入目标网络的目的
我们在前面提到过,引入目标网络的目的其实和DQN算法的想法是一样的。由于目标网络中的参数是通过软更新的方式来缓慢更新的,因此它的输出会更加稳定,利用目标网络来计算目标值自然也会更加稳定,从而进一步保证Critic网络的学习过程更加平稳。试想,如果直接使用Critic网络来计算目标值
那么由于Critic网络在不断更新,网络波动剧烈,自然目标值的变化也很剧烈。在学习过程中,让Critic网络的评估值追逐一个变化剧烈的目标,很容易出现网络震荡,从而导致整个学习过程坍塌。
上述是一种目的,其实还有另外一个目的。当使用Critic网络来计算目标值时(如上式所示),它其实本质上是一种自举 (Bootstrapping) 的过程。然后让不断逼近,很容易导致网络过估计。因为当出现过估计时,会将其回传至,导致该项也出现了过估计,从而形成了一种正反馈,最终导致整个网络出现过估计。
自举 (Bootstrapping)
表示在当前值函数的计算过程中,会利用到后续的状态值函数或动作值函数,即利用到后续的状态或者状态动作对。
那么过估计会出现什么问题呢?如果过估计是均匀的,对于最终的决策不会造成影响;但是如果不均匀,对于最终的决策会产生很大影响。我们举个栗子吧,大家很容易就能明白。
上图中我们假设有三个动作,每个动作的实际动作价值依次是200,100和230,显然动作3的动作价值是最高的,智能体会选择动作3。如果网络出现过估计,并且是均匀的,假设过估计的量是100,那么网络评估出来的动作价值就依次是300,200和330,显然动作3的动作价值依然是最高的,智能体依旧会选择动作3。因此,均匀过估计对于最终的决策并不会产生影响。
同样我们假设有三个动作,每个动作的实际动作价值依次是200,100和230,显然动作3的动作价值是最高的,智能体会选择动作3。如果网络出现不均匀过估计,评估出来的动作价值依次是280,300和240,此时显然动作2的动作价值是最高的,智能体会选择动作2。但是实际上动作2的真实动作价值是最低的,即该动作是最差的。因此,不均匀过估计对于最终的决策会产生很大的影响。
然而实际上网络的过估计是非均匀的,因此需要避免这个问题,本质上就是要解决Bootstrapping问题。采用目标网络后就能解决这个问题
此时我们再让逼近目标值时,就已经不再是自举了(大家可以对照自举的含义仔细观察一下)。
2.3 噪声探索
探索对于智能体来说是至关重要的,而确定性策略“天生”就缺乏探索能力,因此我们需要人为地给输出的动作上加入噪声,从而让智能体具备探索能力。在DDPG算法中,作者采用Ornstein Uhlenbeck过程作为动作噪声。Ornstein Uhlenbeck过程是用下列随机微分方程定义的 (以一维的情况为例):
其中,,是参数(),是标准Brownain运动。当初始扰动是在原点的单点分布(即限定),并且时,上述方程的解为
(证明:将代入,化简可得。将此式从0积到,得。当且时化简可得结果。)
这个解得均值为0,方差为,协方差为
(证明:由于均值为0,所以。另外,Ito Isometry告诉我们,所以,进一步化简可得结果。)
对于总有,所以 。据此可知,使用Ornstein Uhlenbeck过程让相邻扰动正相关,进而让动作向相近的方向偏移。
OU噪声的代码实现:
class OUActionNoise:
def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
看完OU噪声后,可能很多小伙伴是懵的,这个也太复杂了。不过我会告诉大家,其实OU噪声是没必要的,因为我们完全可以采用服从正态分布的噪声来取代它,实验结果也证实了这一点。因此Twin Delayed Deep Deterministic policy gradient (TD3)算法舍弃了OU噪声,而是采用服从正态分布的噪声,实现起来更加简单。
另外还需要提醒大家一点:噪声只会加在训练阶段Actor网络输出的动作上,推理阶段不要加上噪声,以及在更新网络参数时也不要加上噪声,前面已经提醒过了。因为我们只需要在训练阶段让智能体具备探索能力,推理时是不需要的。
3 DDPG算法伪代码
4 代码实现
Actor和Critic网络的代码实现(networks.py):
import torch as T
import torch.nn as nn
import torch.optim as optim
device = T.device("cuda:0" if T.cuda.is_available() else "cpu")
def weight_init(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0.0)
class ActorNetwork(nn.Module):
def __init__(self, alpha, state_dim, action_dim, fc1_dim, fc2_dim):
super(ActorNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim, fc1_dim)
self.ln1 = nn.LayerNorm(fc1_dim)
self.fc2 = nn.Linear(fc1_dim, fc2_dim)
self.ln2 = nn.LayerNorm(fc2_dim)
self.action = nn.Linear(fc2_dim, action_dim)
self.optimizer = optim.Adam(self.parameters(), lr=alpha)
self.apply(weight_init)
self.to(device)
def forward(self, state):
x = T.relu(self.ln1(self.fc1(state)))
x = T.relu(self.ln2(self.fc2(x)))
action = T.tanh(self.action(x))
return action
def save_checkpoint(self, checkpoint_file):
T.save(self.state_dict(), checkpoint_file)
def load_checkpoint(self, checkpoint_file):
self.load_state_dict(T.load(checkpoint_file))
class CriticNetwork(nn.Module):
def __init__(self, beta, state_dim, action_dim, fc1_dim, fc2_dim):
super(CriticNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim, fc1_dim)
self.ln1 = nn.LayerNorm(fc1_dim)
self.fc2 = nn.Linear(fc1_dim, fc2_dim)
self.ln2 = nn.LayerNorm(fc2_dim)
self.fc3 = nn.Linear(action_dim, fc2_dim)
self.q = nn.Linear(fc2_dim, 1)
self.optimizer = optim.Adam(self.parameters(), lr=beta, weight_decay=0.001)
self.apply(weight_init)
self.to(device)
def forward(self, state, action):
x_s = T.relu(self.ln1(self.fc1(state)))
x_s = self.ln2(self.fc2(x_s))
x_a = self.fc3(action)
x = T.relu(x_s + x_a)
q = self.q(x)
return q
def save_checkpoint(self, checkpoint_file):
T.save(self.state_dict(), checkpoint_file)
def load_checkpoint(self, checkpoint_file):
self.load_state_dict(T.load(checkpoint_file))
注:Actor和Critic网络中前面两个Linear层后面都跟上了Layer Normalization (LN)层。因为我在实验时发现了一个非常有趣的现象,如果不加LN层,或者加入Batch Normalization (BN)层,整个训练过程很容易坍塌或者训练效果很差,具体原因我也不是特别清楚。感兴趣的小伙伴可以把代码git下来跑一遍,如果知道原因的话不妨一起交流。
DDPG算法的代码实现(DDPG.py):
import torch as T
import torch.nn.functional as F
import numpy as np
from networks import ActorNetwork, CriticNetwork
from buffer import ReplayBuffer
device = T.device("cuda:0" if T.cuda.is_available() else "cpu")
class DDPG:
def __init__(self, alpha, beta, state_dim, action_dim, actor_fc1_dim,
actor_fc2_dim, critic_fc1_dim, critic_fc2_dim, ckpt_dir,
gamma=0.99, tau=0.005, action_noise=0.1, max_size=1000000,
batch_size=256):
self.gamma = gamma
self.tau = tau
self.action_noise = action_noise
self.checkpoint_dir = ckpt_dir
self.actor = ActorNetwork(alpha=alpha, state_dim=state_dim, action_dim=action_dim,
fc1_dim=actor_fc1_dim, fc2_dim=actor_fc2_dim)
self.target_actor = ActorNetwork(alpha=alpha, state_dim=state_dim, action_dim=action_dim,
fc1_dim=actor_fc1_dim, fc2_dim=actor_fc2_dim)
self.critic = CriticNetwork(beta=beta, state_dim=state_dim, action_dim=action_dim,
fc1_dim=critic_fc1_dim, fc2_dim=critic_fc2_dim)
self.target_critic = CriticNetwork(beta=beta, state_dim=state_dim, action_dim=action_dim,
fc1_dim=critic_fc1_dim, fc2_dim=critic_fc2_dim)
self.memory = ReplayBuffer(max_size=max_size, state_dim=state_dim, action_dim=action_dim,
batch_size=batch_size)
self.update_network_parameters(tau=1.0)
def update_network_parameters(self, tau=None):
if tau is None:
tau = self.tau
for actor_params, target_actor_params in zip(self.actor.parameters(),
self.target_actor.parameters()):
target_actor_params.data.copy_(tau * actor_params + (1 - tau) * target_actor_params)
for critic_params, target_critic_params in zip(self.critic.parameters(),
self.target_critic.parameters()):
target_critic_params.data.copy_(tau * critic_params + (1 - tau) * target_critic_params)
def remember(self, state, action, reward, state_, done):
self.memory.store_transition(state, action, reward, state_, done)
def choose_action(self, observation, train=True):
self.actor.eval()
state = T.tensor([observation], dtype=T.float).to(device)
action = self.actor.forward(state).squeeze()
if train:
noise = T.tensor(np.random.normal(loc=0.0, scale=self.action_noise),
dtype=T.float).to(device)
action = T.clamp(action+noise, -1, 1)
self.actor.train()
return action.detach().cpu().numpy()
def learn(self):
if not self.memory.ready():
return
states, actions, reward, states_, terminals = self.memory.sample_buffer()
states_tensor = T.tensor(states, dtype=T.float).to(device)
actions_tensor = T.tensor(actions, dtype=T.float).to(device)
rewards_tensor = T.tensor(reward, dtype=T.float).to(device)
next_states_tensor = T.tensor(states_, dtype=T.float).to(device)
terminals_tensor = T.tensor(terminals).to(device)
with T.no_grad():
next_actions_tensor = self.target_actor.forward(next_states_tensor)
q_ = self.target_critic.forward(next_states_tensor, next_actions_tensor).view(-1)
q_[terminals_tensor] = 0.0
target = rewards_tensor + self.gamma * q_
q = self.critic.forward(states_tensor, actions_tensor).view(-1)
critic_loss = F.mse_loss(q, target.detach())
self.critic.optimizer.zero_grad()
critic_loss.backward()
self.critic.optimizer.step()
new_actions_tensor = self.actor.forward(states_tensor)
actor_loss = -T.mean(self.critic(states_tensor, new_actions_tensor))
self.actor.optimizer.zero_grad()
actor_loss.backward()
self.actor.optimizer.step()
self.update_network_parameters()
def save_models(self, episode):
self.actor.save_checkpoint(self.checkpoint_dir + 'Actor/DDPG_actor_{}.pth'.format(episode))
print('Saving actor network successfully!')
self.target_actor.save_checkpoint(self.checkpoint_dir +
'Target_actor/DDPG_target_actor_{}.pth'.format(episode))
print('Saving target_actor network successfully!')
self.critic.save_checkpoint(self.checkpoint_dir + 'Critic/DDPG_critic_{}'.format(episode))
print('Saving critic network successfully!')
self.target_critic.save_checkpoint(self.checkpoint_dir +
'Target_critic/DDPG_target_critic_{}'.format(episode))
print('Saving target critic network successfully!')
def load_models(self, episode):
self.actor.load_checkpoint(self.checkpoint_dir + 'Actor/DDPG_actor_{}.pth'.format(episode))
print('Loading actor network successfully!')
self.target_actor.load_checkpoint(self.checkpoint_dir +
'Target_actor/DDPG_target_actor_{}.pth'.format(episode))
print('Loading target_actor network successfully!')
self.critic.load_checkpoint(self.checkpoint_dir + 'Critic/DDPG_critic_{}'.format(episode))
print('Loading critic network successfully!')
self.target_critic.load_checkpoint(self.checkpoint_dir +
'Target_critic/DDPG_target_critic_{}'.format(episode))
print('Loading target critic network successfully!')
算法仿真环境是gym库中的LunarLanderContinuous-v2环境,因此需要先配置好gym库。进入Aanconda中对应的Python环境中,执行下面的指令
pip install gym
但是,这样安装的gym库只包括少量的内置环境,如算法环境、简单文字游戏环境和经典控制环境,无法使用LunarLanderContinuous-v2。因此还要安装一些其他依赖项,具体可以参照这篇blog: AttributeError: module ‘gym.envs.box2d‘ has no attribute ‘LunarLander‘ 解决办法。如果已经配置好环境,那请忽略这一段。
训练脚本(train.py):
import gym
import numpy as np
import argparse
from DDPG import DDPG
from utils import create_directory, plot_learning_curve, scale_action
parser = argparse.ArgumentParser("DDPG parameters")
parser.add_argument('--max_episodes', type=int, default=1000)
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/DDPG/')
parser.add_argument('--figure_file', type=str, default='./output_images/reward.png')
args = parser.parse_args()
def main():
env = gym.make('LunarLanderContinuous-v2')
agent = DDPG(alpha=0.0003, beta=0.0003, state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0], actor_fc1_dim=400, actor_fc2_dim=300,
critic_fc1_dim=400, critic_fc2_dim=300, ckpt_dir=args.checkpoint_dir,
batch_size=256)
create_directory(args.checkpoint_dir,
sub_paths=['Actor', 'Target_actor', 'Critic', 'Target_critic'])
reward_history = []
avg_reward_history = []
for episode in range(args.max_episodes):
done = False
total_reward = 0
observation = env.reset()
while not done:
action = agent.choose_action(observation, train=True)
action_ = scale_action(action.copy(), env.action_space.high, env.action_space.low)
observation_, reward, done, info = env.step(action_)
agent.remember(observation, action, reward, observation_, done)
agent.learn()
total_reward += reward
observation = observation_
reward_history.append(total_reward)
avg_reward = np.mean(reward_history[-100:])
avg_reward_history.append(avg_reward)
print('Ep: {} Reward: {:.1f} AvgReward: {:.1f}'.format(episode+1, total_reward, avg_reward))
if (episode + 1) % 200 == 0:
agent.save_models(episode+1)
episodes = [i+1 for i in range(args.max_episodes)]
plot_learning_curve(episodes, avg_reward_history, title='AvgReward',
ylabel='reward', figure_file=args.figure_file)
if __name__ == '__main__':
main()
训练脚本中有三个参数,max_episodes表示训练幕数,checkpoint_dir表示训练权重保存路径,figure_file表示训练结果的保存路径(其实是一张累积奖励曲线图),按照默认设置即可。
训练时还会用到画图函数和创建文件夹函数,它们都被放在utils.py脚本中:
import os
import numpy as np
import matplotlib.pyplot as plt
class OUActionNoise:
def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def create_directory(path: str, sub_paths: list):
for sub_path in sub_paths:
if not os.path.exists(path + sub_path):
os.makedirs(path + sub_path, exist_ok=True)
print('Create path: {} successfully'.format(path+sub_path))
else:
print('Path: {} is already existence'.format(path+sub_path))
def plot_learning_curve(episodes, records, title, ylabel, figure_file):
plt.figure()
plt.plot(episodes, records, color='r', linestyle='-')
plt.title(title)
plt.xlabel('episode')
plt.ylabel(ylabel)
plt.show()
plt.savefig(figure_file)
def scale_action(action, high, low):
action = np.clip(action, -1, 1)
weight = (high - low) / 2
bias = (high + low) / 2
action_ = action * weight + bias
return action_
另外我们还提供了测试代码,主要用于测试训练效果以及观察环境的动态渲染 (test.py):
import gym
import imageio
import argparse
from DDPG import DDPG
from utils import scale_action
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default='./output_images/LunarLander.gif')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/DDPG/')
parser.add_argument('--save_video', type=bool, default=True)
parser.add_argument('--fps', type=int, default=30)
parser.add_argument('--render', type=bool, default=True)
args = parser.parse_args()
def main():
env = gym.make('LunarLanderContinuous-v2')
agent = DDPG(alpha=0.0003, beta=0.0003, state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0], actor_fc1_dim=400, actor_fc2_dim=300,
critic_fc1_dim=400, critic_fc2_dim=300, ckpt_dir=args.checkpoint_dir,
batch_size=256)
agent.load_models(1000)
video = imageio.get_writer(args.filename, fps=args.fps)
done = False
observation = env.reset()
while not done:
if args.render:
env.render()
action = agent.choose_action(observation, train=True)
action_ = scale_action(action.copy(), env.action_space.high, env.action_space.low)
observation_, reward, done, info = env.step(action_)
observation = observation_
if args.save_video:
video.append_data(env.render(mode='rgb_array'))
if __name__ == '__main__':
main()
测试脚本中包括五个参数,filename表示环境动态图的保存路径,checkpoint_dir表示加载的权重路径,save_video表示是否要保存动态图,fps表示动态图的帧率,rander表示是否开启环境渲染。大家只需要调整save_video和rander这两个参数,其余保持默认即可。
5 实验结果
通过平均奖励曲线可以看出,大概迭代到700步左右时算法趋于收敛。
这是测试效果图,智能体能够很好地完成降落任务!
6 结论
本文主要讲解了DDPG算法的原理以及代码实现。尽管它是一个非常优秀的算法,但是仍然存在一些问题需要改进,例如过估计。后面我们会讲解一下TD3算法,它其实就是在DDPG算法的基础做了一些改进工作,克服了DDPG算法中的一些问题,从而让算法的性能得到显著提升。
以上如果有出现错误的地方,欢迎各位怒斥!
近期评论